Two novel transcripts expressed in pea dormant axillary buds.

نویسندگان

  • Y Madoka
  • H Mori
چکیده

To elucidate the molecular mechanism of apical dominance, the expression patterns of genes that are preferentially expressed in dormant axillary buds of pea (Pisum sativum L. cv. Alaska) seedlings were investigated. We isolated two cDNA clones, cPsAD1 and cPsAD2 whose corresponding genes were named PsAD1 and PsAD2, from a cDNA library of dormant axillary buds using the differential display method. The deduced amino acid sequence of PsAD1 contains 87 residues and is rich in glycine residues in the amino terminal region. A search of the protein databases failed to find any sequences similar to PsAD1 protein except for the glycine-rich region. Northern blot analyses showed that PsAD1 mRNA mainly accumulated in dormant axillary buds and that its amount rapidly decreased after decapitation of the terminal bud. In situ hybridization analyses indicated that PsAD1 mRNA was localized in the apical meristem, procambia, and leaf primordia in dormant axillary buds that were competent to grow out but whose growth was temporarily suspended. That is, the expression of the PsAD1 gene is closely associated with the dormancy of axillary buds. The deduced amino acid sequence of PsAD2 contains 98 amino acid residues and is not similar to those of previously characterized proteins. PsAD2 mRNA accumulated in dormant axillary buds, roots, mature leaflets and elongated stems, suggesting that PsAD2 is involved in not only the dormancy of axillary buds but also the non-growing state in various tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acropetal disappearance of PsAD1 protein in pea axillary buds after the release of apical dominance.

We recently isolated PsAD1 cDNA from pea (Pisum sativum L. cv. Alaska) seedlings, whose mRNA abundantly accumulated in dormant axillary buds and disappeared after decapitation [Madoka and Mori (2000) Plant Cell Physiol. 41: 274]. To further elucidate the function of PsAD1, we investigated the temporal and spatial distribution patterns of PsAD1 protein using Western blot and immunocytochemical a...

متن کامل

Expression of a ribosomal protein gene in axillary buds of pea seedlings.

Axillary buds of intact pea seedlings (Pisum sativum L. cv Alaska) do not grow and are said to be dormant. Decapitation of the terminal bud promotes the growth of these axillary buds, which then develop in the same manner as terminal buds. We previously showed that unique sets of proteins are expressed in dormant and growing buds. Here we describe the cloning, sequencing, and expression of a cD...

متن کامل

Roles of DgBRC1 in Regulation of Lateral Branching in Chrysanthemum (Dendranthema ×grandiflora cv. Jinba)

The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously prov...

متن کامل

Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen

Axillary buds (AXBs) of hybrid aspen (Populus tremula×P. tremuloides) contain a developing dwarfed shoot that becomes para-dormant at the bud maturation point. Para-dormant AXBs can grow out after stem decapitation, while dormant AXBs pre-require long-term chilling to release them from dormancy. The latter is mediated by gibberellin (GA)-regulated 1,3-β-glucanases, but it is unknown if GA is al...

متن کامل

Auxin flow-mediated competition between axillary buds to restore apical dominance

Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 2000